Quantum Hashing for Finite Abelian Groups
نویسنده
چکیده
We propose a generalization of the quantum hashing technique based on the notion of the small-bias sets. These sets have proved useful in different areas of computer science, and here their properties give an optimal construction for succinct quantum presentation of elements of any finite abelian group, which can be used in various computational and cryptographic scenarios. The known quantum fingerprinting schemas turn out to be the special cases of the proposed quantum hashing for the corresponding abelian group.
منابع مشابه
Quantum Error-Correction Codes on Abelian Groups
We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملTHE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS
A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.
متن کاملControl/target Inversion Property on Abelian Groups
We show that the quantum Fourier transform on finite fields used to solve query problems is a special case of the usual quantum Fourier transform on finite abelian groups. We show that the control/target inversion property holds in general. We apply this to get a sharp query complexity separation between classical and quantum algorithms for a hidden homomorphism problem on finite abelian groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1603.02209 شماره
صفحات -
تاریخ انتشار 2016